

Nuclear Extract Kit

Catalog Nos. 40010 & 40410

(Version E2)

Copyright 2022 Active Motif, Inc.

Revision	Date	Description of Change
E2	January, 2025	Updated table on pages 9, 11, & 12
E1	August, 2024	Formatting update
D7	March, 2024	Important: Phosphatase Inhibitors (AM Part 102146) has been replaced with 100x Phosphatase Inhibitors (AM Part 105840). Consult the appropriate protocol (nuclear, cytoplasmic or whole-cell extract from cells or from tissue) to determine the updated amount of PBS/Phosphatase Inhibitors solution that will be required for your extraction(s).
D4	December, 2018	Clarified recommendations for measuring protein concentration.

The Nuclear Extract Kit is for research use only. Not for use in diagnostic procedures.

Information in this manual is subject to change without notice and does not constitute a commitment on the part of Active Motif, Inc. It is supplied on an "as is" basis without any warranty of any kind, either explicit or implied. Information may be changed or updated in this manual at any time.

This documentation may not be copied, transferred, reproduced, disclosed, or duplicated, in whole or in part, without the prior written consent of Active Motif, Inc. This documentation is proprietary information and protected by the copyright laws of the United States and international treaties.

The manufacturer of this documentation is Active Motif, Inc.

© 2022 Active Motif, Inc., 1914 Palomar Oaks Way, Suite 150; Carlsbad, CA 92008. All rights reserved.

All trademarks, trade names, service marks or logos referenced herein belong to their respective companies.

Contents

Overview
Kit Performance and Benefits
Kit Components and Storage
Additional Materials Required4
Optional Additional Materials4
Protocols – Buffer Preparation and Recommendations
Reagents from the Nuclear Extract Kit
Protocol I – Adherent or Suspension Cells
A. Preparation of Nuclear Extract from Cells7
B. Preparation of Whole-Cell Extract from Cells
Protocol II – Fresh or Frozen Tissue
A. Preparation of Nuclear Extract from Tissue
B. Preparation of Whole-Cell Extract from Tissue
Appendix
Section A. Example Dilution for Bradford Protein Quantitation
Section B. Troubleshooting Guide 15
Technical Services

The Nuclear Extract Kit has been developed for the preparation of nuclear, whole-cell and cytoplasmic extracts from cells or tissue. The kit procedure is a simple, fast and effective way to obtain non-denatured, active proteins contained in cytoplasmic and nuclear compartments of the cell. The proteins collected by this high-salt extraction method can be used for a variety of standard protocols including electrophoretic mobility shift assay (EMSA), DNA footprinting, Western blotting and preparative purification of nuclear proteins for use in downstream applications such as enzyme activity assays or binding studies. The Nuclear Extract Kit is the recommended method for preparation of cell extracts for use in Active Motif's TransAM[™] assays to monitor transcription factor activation.

Each kit provides reagents for 100 or 400 extractions from 8.8×10^6 cells, which corresponds to HeLa cells grown to confluence in a 100 mm tissue culture dish.

The Nuclear Extract Kit is intended for use for preparation of nuclear, cytoplasmic and wholecell fractions from various cell and tissue types. Extractions can be performed with fresh and frozen cell and tissue samples.

For preparation of nuclear extracts, the cells are first collected in ice-cold PBS in the presence of Phosphatase Inhibitors to limit further protein modifications (expression, proteolysis, dephosphorylation, etc.). Then, the cells are resuspended in Hypotonic Buffer to swell the cell membrane and make it fragile. Addition of the Detergent causes leakage of the cytoplasmic proteins into the supernatant. After collection of the cytoplasmic fraction, the nuclei are lysed and the nuclear proteins are solubilized in detergent-free Lysis Buffer in the presence of the Protease Inhibitor Cocktail.

To prepare whole-cell extracts, cells are collected in the PBS/Phosphatase Inhibitors solution and lysed in the Lysis Buffer. Solubilized proteins are separated from the cell debris by centrifugation.

To prepare extracts from fresh or frozen tissue, samples are diced and disrupted using a Dounce homogenizer to form a single-cell slurry. Cells are then lysed in the lysis buffer and solubilized proteins are separated from the cell debris by centrifugation.

The protein concentration of the cell extract is then measured by Active Motif's ProStain[™] Protein Quantification Kit (Catalog No. 15001) or a Bradford-based assay. We do not recommend the BCA assay as the appropriate dilution required will produce such a dilute extract, the protein concentration will not be within the range of the standard curve produced.

Product	Format	Catalog Nos.
Nuclear Extract Vit	100 rxns	40010
	400 rxns	40410

Kit Performance and Benefits

Assay Time	2 hours	
Yield of protein	Cytoplasmic extract: ~0.5-1 mg at ~1-2 mg/mL from 8.8 x 10 ⁶ cells Nuclear extract: ~0.15-0.25 mg at ~3-5 mg/mL from 8.8 x 10 ⁶ cells Whole-cell extract ~1.2-2.4 mg at 4-8 mg/mL from 8.8 x 10 ⁶ cells Note: Example is from HeLa cells grown to confluency	
Assay compatibility	TransAM [™] , EMSA, DNA footprinting, Western blotting, preparative nuclear protein purification, protein assays. Active transcription factors extracted include NFκB, AP-1, CREB, p53, HIF-1, STAT, Sp1, NFAT, MyoD, NF-YA, C/EBP and PPARγ. Successful extraction has been performed with HeLa, WI-38, COS-7, PC-12, Jurkat and RINm5F cells, and many more. Extraction can be performed with fresh or frozen cell and tissue samples.	
Time Course Studies	For time course studies where the effectors are added at different timepoints, we suggest that cells be lysed and processed at the same time to maintain consistency among samples.	

Figure 1: Specific extraction of nuclear and cytoplasmic extracts.

NFkB activation was assayed with the TransAM[®] NFkB p50 Kit (Catalog Nos. 41096 and 41596) using increasing amounts of nuclear and cytoplasmic extracts isolated from unstimulated and stimulated HeLa cells using the Nuclear Extract Kit.

Figure 2: Western blots of specific proteins from cellular fractions.

Active Motif's Nuclear Extract Kit was used to generate nuclear, cytoplasmic and whole-cell extracts from HeLa cells to analyze the efficiency of cellular fractionation. 20 µg of cytoplasmic (Cy), nuclear (Nu), and whole-cell (WC) extracts, along with the nuclear pellet (NP) collected from nuclear extraction, were run on 4-20% SDS-PAGE gels and analyzed by Western blot using 1:1000 dilutions of primary antibodies to various specific proteins. Primary antibodies: Active Motif alpha Tubulin mAb (Catalog No. 39528); COX IV mAb; GAPDH mAb; Active Motif Lamin A/C mAb (Catalog No. 39288); Pan-Cadherin mAb; Active Motif RNA pol II mAb (Catalog No. 39097). Note that RNA pol II is found primarily in the nuclear pellet due to its association with the nucleoskeleton and chromatin. The optional addition of Detergent to the nuclear pellet can sometimes aid in solubilizing nucleoskeleton- or chromatin-associated proteins such as RNA pol II.

Kit Components and Storage

Kit components can be stored at -20°C prior to first use. Then, we recommend storing each component at the temperatures recommended in the table below:

Kit Component	Qty. 100 rxns	Qty. 400 rxns	Storage
Lysis Buffer AM1	10 mL	50 mL	4°C for 6 months
1 M Dithiothreitol (DTT)	100 µL	500 μL	-20°C for 1 year
Protease Inhibitor Cocktail	100 μL	500 μL	-20°C for 1 year
10X PBS	100 µL	4 x 100 mL	4°C for 6 months
100x Phosphatase Inhibitors	8 mL	4 x 8 mL	-20°C for 6 months
10X Hypotonic Buffer	50 mL	4 x 50 mL	4°C for 6 months
Detergent	3 mL	4 x 3 mL	4°C for 1 year

Additional Materials Required

- 5 and 10 mL pipettes
- Pipettors
- Cell scraper
- 15 mL conical tubes
- Microcentrifuge tubes
- Centrifuge (with swinging buckets adapted to 15 mL conical tubes) and microcentrifuge pre-cooled at $4^{\rm o}{\rm C}$
- Rocking platform
- Distilled water

Optional Additional Materials

Dounce homogenizer, 2 mL capacity, with a large (looser, A) pestle clearance of 0.12 mm for the initial sample reduction, and a small (tighter, B) pestle clearance of 0.06 mm for the final homogenate

Note: Adherent and suspension cell preparations require the small-clearance (B) pestle whereas fresh and frozen tissue preparations require both large (A)- and small (B)-clearance pestles.

Suggested Dounce homogenizer: Active Motif (Catalog Nos. 40401 and 40415)

Reagents from the Nuclear Extract Kit

Preparation of PBS/Phosphatase Inhibitors

Imporant: As of May, 2022, there is a new formulation of Phosphatase Inhibitors. The originial Phosphatase Inhibitors (AM Part 102146), have been replaced by 100x Phosphatase Inhibiors (AM Part 105840). Consult the appropriate protocol (nuclear, cytoplasmic or whole-cell extract from cells or from tissue) to determine the updated amount of PBS/Phosphatase Inhibitors solution that will be required for your extraction(s).

For example, to make nuclear extract from a 100 mm plate of cells, prepare 8 mL of PBS/ Phosphatase Inhibitors solution as follows: mix 0.8 mL 10X PBS in 7.12 mL distilled water, then add 80 μ L Phosphatase Inhibitors. Since the Phosphatase Inhibitors lose their activity 24 hours after dilution, the solution should be used within this time frame. Any remaining solution should be discarded if not used on the same day.

Preparation of 1X Hypotonic Buffer

Note that the Hypotonic Buffer already contains phosphatase (but not protease) inhibitors. Consult the protocol you intend to use (nuclear, cytoplasmic or whole-cell extract from cells or from tissue) to determine the amount of 1X Hypotonic Buffer that will be required for your extraction(s). For example, to make nuclear extract from a 100 mm plate of cells, prepare 500 μ L of 1X Hypotonic Buffer as follows: mix 50 μ L 10X Hypotonic Buffer and 450 μ L distilled water. Any remaining 1X Hypotonic Buffer can be stored at 4°C for 1 week.

Preparation of 10 mM DTT

The Nuclear Extract Kit is supplied with 1 M DTT. To make Complete Lysis Buffer, you will need to first dilute the 1 M DTT to create 10 mM DTT. However, 1 M DTT is used to perform nuclear and cytoplasmic extractions from tissue (see **Protocol II: Fresh or Frozen Tissue** on page 11). To make 10 mM DTT, make a 1:100 dilution of the supplied 1 M DTT in distilled water. For example, add 1 μ L of 1 M DTT to 99 μ L distilled water. DTT is highly labile, so 10 mM DTT must be prepared fresh each time. Avoid multiple freeze/thaw cycles.

Preparation of Complete Lysis Buffer

Note: If you will be using the nuclear extract in a TransAM Kit that comes with Lysis Buffer AM2, substitute the Lysis Buffer AM2 in for Lysis AM1 when preparing the Complete Lysis Buffer.

Note that the Complete Lysis Buffer already contains phosphatase (but not protease) inhibitors. The presence of phosphatase inhibitors gives a yellow coloration to Lysis Buffer AM1. Consult the appropriate protocol (nuclear, cytoplasmic or whole-cell extract from cells or from tissue) to determine the amount of Complete Lysis Buffer that will be required for your extraction(s). For example, to make nuclear extract from a 100 mm plate of cells, prepare 50 μ L Complete Lysis Buffer as follows: add 5 μ L 10 mM DTT to 44.5 μ L of Lysis Buffer AM1, then add 0.5 μ L Protease Inhibitor Cocktail. Since some of the protease inhibitors lose their activity promptly after dilution. Therefore, use the Complete Lysis Buffer immediately for cell lysis. Any remaining amount should be discarded if not used on the same day.

A. Preparation of Nuclear Extract from Cells

The following protocol is based on samples of approximately 8.8 x 10⁶ cells, which correspond to HeLa cells grown to confluence in a 100 mm tissue culture plate. Each sample is one reaction. Prepare PBS/Phosphatase Inhibitors, Hypotonic Buffer and Complete Lysis Buffer as described above on page 5 in the section **Buffer Preparation**. Adjust the volumes according to the buffer preparation chart if using plates of different sizes. Place buffers and any tubes needed on ice before beginning assay.

Reagents to prepare	Components	60mm plate or 3.2 x 10 ⁶ cells	100mm plate or 8.8 x 10 ⁶ cells	150mm plate or 2 x 10 ⁷ cells
PBS/Phosphatase	10X PBS	0.4 mL	0.8 mL	1.6 m
Inhibitors	Distilled water	3.56 mL	7.12 mL	14.24 mL
	Phosphatase Inhibitors	40 μL	80 μL	160 μL
	Total Required	4.0 mL	8.0 mL	16.0 mL
1X Hypotonic Buffer	10X Hypotonic Buffer	25 μL	50.0 μL	100 μL
	Distilled water	225 μL	450.0 μL	0.9 mL
	Total Required	250 μL	500 μL	1 mL
Complete Lysis Buffer	10 mM DTT	2.5 μL	5 μL	10.0 μL
	Lysis Buffer AM1**	22.25 μL	44.5 μL	89 μL
	Protease Inhibitor Cocktail	0.25 μL	0.5 μL	1.0 μL
	Total Required	25 μL	50 μL	100 μL
*(Optional) Detergent	Total Required	1.25 μL	2.5 μL	5 μL

Quick Chart for Preparing Buffers for Nuclear Extraction from Cells

*The addition of Detergent to the nuclear pellet may help with solubility of proteins, specifically those tightly associated with membranes or chromatin.

**If the nuclear extract will be used in a TransAM Kit that comes with Lysis Buffer AM2, substitute the Lysis Buffer AM2 in for Lysis Buffer AM2 here.

Step 1: Cell Collection

- Aspirate media out of dish. Wash with 5 mL ice-cold PBS/Phosphatase Inhibitors. Aspirate solution out and add 3 mL ice-cold PBS/Phosphatase Inhibitors. If working with suspension cells, pellet cells and wash with 3 mL ice-cold PBS/Phosphatase Inhibitors and proceed to step 3.
- Remove cells from dish by gently scraping adherent cells with cell lifter or, alternatively, pellet suspension cells by centrifugation. Transfer cells to a pre-chilled 15 mL conical tube.

Note: Use of trypsin to detach cells can activate some signal transduction pathways.

- **3.** Centrifuge cell suspension for 5 minutes at $200 \times g$ in a centrifuge pre-cooled at 4° C.
- **4.** Discard supernatant. Keep cell pellet on ice.

Step 2: Cytoplasmic Fraction Collection

- **Note:** Make sure to verify cell lysis efficiency and release of the nuclei by comparing the appearance of cells before and after cell lysis (steps 1 and 2) using phase-contrast microscopy. Intact cells should appear as a dark central nucleus surrounded by a halo of less dense cytoplasm.
- 1. Gently resuspend cells in 500 μ L 1X Hypotonic Buffer by pipetting up and down several times. Transfer to a pre-chilled microcentrifuge tube. Allow cells to swell by incubating for 15 minutes on ice.
- 2. Add 25 μ L Detergent (for tissue, add 5 μ L Detergent per every 100 μ L Hypotonic Buffer) and vortex 10 seconds at the highest setting.
- **3.** Check a small sample under the microscope to verify that cells have been efficiently lysed and that nuclei have been released. If the cells are not adequately lysed at this step, use an ice-cold Dounce homogenizer with a small-clearance (B) pestle to lyse the cells (refer to the Troubleshooting Guide in Section A of the Appendix, page 14, for further information).
- **Note:** Do not proceed with the centrifugation step until the cells are sufficiently lysed.
- **4.** Centrifuge suspension for 30 seconds at 14,000 x g in a microcentrifuge pre-cooled at 4°C.
- **5.** Transfer supernatant (cytoplasmic fraction) into a pre-chilled microcentrifuge tube. Store the supernatant at -80°C until ready to use. Use the pellet for nuclear fraction collection.

Optional: Save a fraction of the supernatant (cytoplasmic fraction) for determination of fractionation efficiency by Western blot.

Step 3: Nuclear Fraction Collection

1. Resuspend nuclear pellet in 50 μL Complete Lysis Buffer by pipetting up and down.

Optional: Add 2.5 μ L Detergent to help solubilize membrane-associated nuclear proteins.

A very viscous pellet may form and not completely resuspend. Alternatively, a Dounce homogenizer can be used (refer to **Appendix, Section B Troubleshooting Guide** on page 15, for further information). Vortex 10 seconds at the highest setting.

2. Incubate suspension for 30 minutes on ice on a rocking platform set at 150 rpm.

- **3.** Vortex 30 seconds at the highest setting. Centrifuge for 10 minutes at 14,000 x g in a microcentrifuge pre-cooled at 4°C. Transfer supernatant (nuclear fraction) into a pre-chilled microcentrifuge tube. **Optional**: Save a fraction of the supernatant (nuclear fraction) for determination of fractionation efficiency by Western blot.
- **4.** Aliquot and store at -80°C. Avoid freeze/thaw cycles.
- Note: The presence of certain detergents or PMSF may interfere with the Bradford assay, thus perform a 1:50 or 1:250 dilution of your samples. Use the Complete Lysis Buffer as the blank with a similar dilution as the samples. Read the absorbance at 595 nm with a plate reader spectrophotometer (refer to the **Appendix, Section A** on page 14 for an example dilution series). As an alternative, try Active Motif's ProStain[™] Protein Quantification Kit (Catalog No. 15001), which offers greater sensitivity and resistance to many contaminating agents.

B. Preparation of Whole-Cell Extract from Cells

The following protocol is based on samples of approximately 8.8 x 10⁶ cells, which correspond to HeLa cells grown to confluence in a 100 mm tissue culture plate. Each sample is one reaction. Prepare PBS/Phosphatase Inhibitors and Complete Lysis Buffer as described above on page 5 in the section **Buffer Preparation**. Adjust the volumes according to the buffer preparation chart if using plates of different sizes. Place buffers and any tubes needed on ice before beginning assay.

Reagents to prepare	Components	60mm plate or 3.2 x 10 ⁶ cells	100mm plate or 8.8 x 10 ⁶ cells	150mm plate or 2 x 10 ⁷ cells
PBS/Phosphatase	10X PBS	0.4 mL	0.8 mL	1.6 mL
Inhibitors	Distilled water	3.56 mL	7.12 mL	14.24 mL
	Phosphatase Inhibitors	40 μL	80 μL	160 μL
	Total Required	4.0 mL	8.0 mL	16.0 mL
Complete Lysis Buffer	10 mM DTT	10.0 μL	30.0 μL	90.0 μL
	Lysis Buffer AM1	89.0 μL	267.0 μL	801.0 μL
	Protease Inhibitor Cocktail	1.0 μL	3.0 μL	9.0 μL
	Total Required	100.0 μL	300.0 μL	900.0 μL

Quick Chart for Preparing Buffers for Whole-Cell Extraction from Cells

Step 1: Cell Collection

- Aspirate media out of dish. Wash with 5 mL ice-cold PBS/Phosphatase Inhibitors. Aspirate solution out, and add 3 mL ice-cold PBS/Phosphatase Inhibitors. If working with suspension cells, pellet cells and wash with 3 mL ice-cold PBS/Phosphatase Inhibitors and proceed to step 3.
- 2. Remove cells from dish by gently scraping with cell lifter. Transfer cells to a pre-chilled 15 mL conical tube.

- **3.** Centrifuge cell suspension for 5 minutes at 200 x g in a centrifuge pre-cooled at 4°C.
- **4.** Discard supernatant. Keep cell pellet on ice.

Step 2: Cell Lysis

- 1. Resuspend cell pellet in 300 μL Complete Lysis Buffer by pipetting up and down.
- 2. Incubate suspension for 10-30 minutes on ice on a rocking platform set at 150 rpm. Check a small sample under the microscope to verify that cells have been efficiently lysed to determine length of incubation. If the cells are not adequately lysed at this step, use an ice-cold Dounce homogenizer with a small-clearance (B) pestle to lyse the cells (refer to Appendix, Section A Troubleshooting Guide on page 15, for further information).
- **Note:** Do not proceed with the centrifugation step until the cells are sufficiently lysed.
- **3.** Vortex 30 seconds at the highest setting. Centrifuge for 20 minutes at 14,000 x g in a microcentrifuge pre-cooled at 4°C. Transfer supernatant (whole-cell extract) into a pre-chilled microcentrifuge tube.
- **4.** Aliquot and store at -80°C. Avoid freeze/thaw cycles.

Optional: Save a fraction of the supernatant for determination of extraction efficiency by Western blot.

Note: The presence of certain detergents or PMSF may interfere with the Bradford assay, thus perform a 1:50 or 1:250 dilution of your samples. Use the Complete Lysis Buffer as the blank with a similar dilution as the samples. Read the absorbance at 595 nm with a plate reader spectrophotometer (refer to the **Appendix, Section A** on page 14 for an example dilution series). As an alternative, try Active Motif's ProStain[™] Protein Quantification Kit (Catalog No. 15001), which offers greater sensitivity and resistance to many contaminating agents.

A. Preparation of Nuclear Extract from Tissue

Step 1: Tissue Homogenization

We recommend using only fresh tissue samples. If you have frozen tissue, we suggest you use the **Whole-Cell Extract procedure** on page 12. However, nuclear fractionation with frozen tissue will produce quality nuclear extract, just at a lower yield. Samples should be kept on ice at all times. All steps are performed on ice or at 4°C with pre-cooled buffers and equipment. It can be generally estimated that there are 2×10^5 cells per milligram of tissue. However, we highly recommend that you perform an accurate quantitation of cell number for your specific tissue sample(s) prior to proceeding with the protocol.

Note: For Complete Lysis Buffer, remember to dilute 1 M DTT stock 1:100 to make 10 mM DTT.

Reagents to prepare	Components	50 mg	100 mg	1 gram
1X Hypotonic Buffer (for	10X Hypotonic Buffer	20 μL	40 µL	400 μL
tissue homogenization)	Protease Inhibitor Cocktail	2 μL	4 μL	40 μL
	Phosphatase Inhibitors	2 μL	4 μL	40 μL
	Distilled water	176 μL	352 μL	3.5 mL
	1 M DTT	0.2 μL	0.4 μL	4 μL
	Detergent	0.2 μL	0.4 μL	4 μL
	Total Required	200 μL	400 μL	4.0 mL
1X Hypotonic Buffer	10X Hypotonic Buffer	2.5 μL	5.0 μL	50.0 μL
(for cytoplasmic fractionation)	Distilled water	22.5 μL	45.0 μL	450.0 μL
	Total Required	25.0 μL	50.0 μL	500.0 μL
Complete Lysis Buffer	10 mM DTT	2.5 μL	5 μL	10.0 μL
	Lysis Buffer AM1	22.25 μL	44.5 μL	89 μL
	Protease Inhibitor Cocktail	0.25 μL	0.5 μL	1.0 μL
	Total Required	25 μL	50 μL	100 μL
*(Optional) Detergent	Total Required	1.25 μL	2.5 μL	5 μL

Quick Chart for Preparing Buffers for Nuclear Extraction from Tissue

*The addition of Detergent to the nuclear pellet may help with solubility of proteins, specifically those tightly associated with membranes or chromatin.

Note: Volumes of reagents may need to optimized for each tissue.

- **1.** Work quickly to preserve tissue during preparation.
- 2. For 1 gram of tissue, to obtain a single cell slurry, perform a tissue reduction.

Fresh tissue: Dice tissue into 1-3 mm³ pieces using a clean razor blade or scalpel. Keep tissue cold by performing this step in a cold ceramic mortar (mortar can be kept cold by submerging its base in liquid nitrogen). Collect pieces in a pre-chilled, clean Dounce homogenizer and dounce using a large-clearance (A) pestle.

Frozen tissue: Crush desired amount of frozen tissue using a mortar and pestle with the base submerged in liquid nitrogen. Some liquid nitrogen can be placed in the mortar bowl along with the frozen tissue. The pestle can be cooled with liquid nitrogen.

- **3.** This example protocol uses 1 gram of frozen tissue; please adjust the volumes for the amount of tissue used from the chart above. On ice, add 3 mL ice-cold 1X Hypotonic Buffer containing phosphatase and protease inhibitors supplemented with DTT and Detergent per gram of tissue and homogenize using the Dounce homogenizer with a large-clearance (A) pestle for approximately 20 strokes to disrupt tissue. Check under microscope to ensure that the cells are dissociated, continue homogenizing until you have a single cell slurry.
- **4.** Incubate on ice for 15 minutes.
- **5.** Centrifuge for 10 minutes at 850 x g at 4°C. Transfer the supernatant into a pre-chilled microcentrifuge tube. The pellet now contains a mixture of unbroken cells and nuclei, while the supernatant contains part of the cytosolic fraction from any lysed cells.

Optional: The supernatant fraction can be saved to later determine fractionation efficiency by Western blot if desired.

6. Most of the cells are still not lysed in the pellet. For cell lysis, continue the procedure with the pellet at Step 2: Cytoplasmic Fraction Collection, No. 1 on page 8 by resuspending in 500 μL 1X Hypotonic Buffer

B. Preparation of Whole-Cell Extract from Tissue

Quick Chart for Preparing Buffers for Whole-Cell Extraction from Tissue

Reagents to prepare	Components	50 mg	100 mg	1 gram
Complete Lysis Buffer	10 mM DTT	0.2 μL	0.4 μL	4 μL
	Lysis Buffer AM1	196 μL	392 μL	3.92 mL
	Protease Inhibitor Cocktail	2 μL	4 μL	40 µL
	Phosphatase Inhibitors	2 μL	4 μL	40 μL
	Total Required	200 μL	400 μL	4.0 mL

Note: Volumes of reagents may need to optimized for each tissue.

- **1.** For 1 gram of tissue, perform a tissue reduction by dicing tissue into 1-3 mm³ pieces using a clean razor blade. Collect pieces in a pre-chilled 15 mL conical tube.
- 2. On ice, disrupt and homogenize tissue in 3 mL ice-cold Complete Lysis Buffer per gram of tissue with a Dounce homogenizer or a Polytron device. Maintain temperature at 4°C throughout all procedures. Incubate on ice for 30 minutes.
- **Note:** Frozen tissue can be sliced very thinly and thawed in this buffer. When using a mechanical homogenizer, begin homogenization at slow speeds until the tissue is broken into smaller pieces and then increase the speed to the maximum for 45-60 seconds. Avoid the generation of excess heat or foam.
- **3.** Transfer to pre-chilled microcentrifuge tubes, centrifuge at 10,000 x g for 10 minutes at 4°C.
- **4.** Transfer supernatants to new pre-chilled tubes and centrifuge again. Pool supernatants in the same tube. The supernatant contains the whole-cell lysate. Sometimes a longer centrifugation is necessary to obtain a clarified lysate.
- 5. Aliquot and store at -80°C. Avoid freeze/thaw cycles.

Optional: Save a fraction of the supernatant for determination of extraction efficiency by Western blot.

Note: The presence of certain detergents or PMSF may interfere with the Bradford assay, thus perform a 1:50 or 1:250 dilution of your samples. Use the Complete Lysis Buffer as the blank with a similar dilution as the samples. Read the absorbance at 595 nm with a plate reader spectrophotometer (refer to the **Appendix, Section A** on page 14 for an example dilution series). As an alternative, try Active Motif's ProStain[™] Protein Quantification Kit (Catalog No. 15001), which offers greater sensitivity and resistance to many contaminating agents.

Section A. Example Dilution for Bradford Protein Quantitation

An example dilution series in preparation for the Bradford Assay is provided below.

- **1.** To measure the protein concentration utilizing the Bradford Assay, begin with a working stock of BSA (the example shown below uses working BSA stock at 5 mg/mL).
- **Note:** The DTT and protease inhibitors in the Complete Lysis Buffer require dilution before assaying for protein concentration. It is important to add the DTT and protease inhibitors to the lysis buffer before making the appropriate dilutions.
- Dilute the Complete Lysis Buffer in preparation for the assay. The suggested dilutions are 1:50 or 1:250. Determine number of blank and standard wells you will be assaying and make enough diluted Lysis Buffer 1:50 or 1:250 stock to perform all dilutions. Dilute in water. Follow your Bradford Assay instructions for volume needed per well.

Example: Lysis Buffer 1:50 stock = 30 μ L Complete Lysis Buffer in 1470 μ L H₂O Lysis Buffer 1:250 stock = 6 μ L Complete Lysis Buffer in 1494 μ L H₂O

3. Make up a 50 µg/mL BSA solution by adding 10 µL of the 5 mg/mL working BSA stock to 990 µL of Complete Lysis Buffer. Next, pipette 0.5 mL of Complete Lysis Buffer into the 4 remaining tubes. Use the 50 µg/mL BSA solution to prepare a dilution series as indicated below. The example standards below use the following concentrations: 50, 25, 12.5, 6.25, and 3.125 µg/mL. Note: The preceding range is provided as guidance, a broader range of values may be used. Refer to your Bradford Assay instructions for details. Mix tubes thoroughly before each transfer. Prepare Blank and samples. The 50 µg/mL standard is the high standard and the Blank (Complete Lysis Buffer alone) is 0.0 µg/mL.

Example: 10 μL BSA (5 mg/mL) in 0.99 mL Complete Lysis Buffer 1:50 or 1:250 stock = 50 μg/mL Transfer 0.5 mL into 0.5 mL Complete Lysis Buffer 1:50 or 1:250 stock = 25 μg/mL Transfer 0.5 mL into 0.5 mL Complete Lysis Buffer 1:50 or 1:250 stock = 12.5 μg/mL Transfer 0.5 mL into 0.5 mL Complete Lysis Buffer 1:50 or 1:250 stock = 6.25 μg/mL Transfer 0.5 mL into 0.5 mL Complete Lysis Buffer 1:50 or 1:250 stock = 3.125 μg/mL

> Blank = Complete Lysis Buffer 1:50 or 1:250 stock Standards = dilute BSA into Complete Lysis Buffer 1:50 or 1:250 stock Samples = 1 μ L sample diluted into 49 μ L or 249 μ L water

4. Analyze Blank, Standards and Samples by measuring the absorbance at 595 nm with a spectrophotometer according to your Bradford Assay instructions.

Section B. Troubleshooting Guide

Problem / Question	Possible cause	Recommendation
Low protein concentration in cytoplasmic fraction	Volumes of extraction reagents not appropriate for given number of cells	Adjust volumes of reagents as indicated in the Quick Chart for Preparing Buffers.
	Plasma cell membrane not disrupted in cell pellet in Step 2, No. 1 of the Preparation of Nuclear Extract from Cells of Protocol I (page 7)	Gently pipette up and down to disrupt cell pellet. Monitor lysis under microscope. Use Dounce homogenizer with small-clearance (B) pestle.
Low protein concentration in nuclear fraction	Incorrect volume of Lysis Buffer or starting cell number	Decrease volume of Lysis Buffer or increase number of cells.
	Volumes of extraction reagents not appropriate for given number of cells	Adjust volumes of reagents as indicated in the Quick Chart for Preparing Buffers.
	Nuclear proteins lost in cytoplasmic fraction after rupture of nuclei	Monitor under microscope. Reduce vortex, centrifuge force and time in Step 2, Nos. 2 and 3 of the Preparation of Nuclear Extract from Cells section of Protocol I (page 7). Stop incubation when nuclei are released.
	Nuclear pellet not dispersed in Step 3, No. 1 of the Preparation of Nuclear Extract from Cells of Protocol I (page 7)	Vortex thoroughly to ensure nuclear lysis. Use the Dounce homogenizer if the pellet has trouble solubilizing.
No or low protein yield in either	Cell type is not compatible with extraction procedure	Swelling and lysis conditions and reagents need to be optimized for this cell type.
nuclear fractions	Overlysis	Nuclear proteins are present in cytoplasmic fraction. Reduce incubation time in Hypotonic Buffer. For frozen samples, cytoplasmic fraction will have proteins due to nuclear lysis during freeze/thaw.
	Incomplete lysis	Cytoplasmic proteins are present in the nuclear fraction. Check cells under a microscope after adding Detergent for presence of free nuclei indicative of efficient lysis. Alternatively, perform 10 strokes with a chilled Dounce homogenizer with a small-clearance (B) pestle to completely lyse cells.

Problem / Question	Possible cause	Recommendation
Poor protein compartmentalization	Incomplete removal of cytoplasmic fraction	Make sure to remove all cytoplasmic fraction from the nuclear pellet before adding Lysis Buffer.
No or low protein activity	Collected proteins are degraded	Maintain low temperature requirements during procedure. Limit procedure time to a minimum and snap freeze aliquots right away. Add more or different protease inhibitors.
Nuclear pellet is viscous and will not resuspend	Incomplete dispersal of nuclear pellet	Vortex thoroughly to ensure nuclear lysis. Use the Dounce homogenizer if the pellet has trouble solubilizing. Certain cell types produce a viscous nuclear pellet and still produce efficient yield from the nuclear extraction.

Technical Services

If you need assistance at any time, please call or send an e-mail to Active Motif Technical Service at one of the locations listed below.

ica	Toll free:	877 222 9543
Amer	Direct:	760 431 1263
orth /	Fax:	760 431 1351
ž	Email:	tech_service@activemotif.com
	Direct	122 (0)2 (52 0001
be	Direct.	+32 (0)2 653 0001
uro	Fax:	+32 (0)2 653 0050
ш	Email:	eurotech@activemotif.com
	Direct:	+81 (0)3 5225 3638
apan	Fax:	+81 (0)3 5261 8733
	Email:	japantech@activemotif.com
~	Direct:	(86)-21-20926090
Chine	Cell Phone:	18521362870
	Email:	techchina@activemotif.com